Cloud and Datacenter Management Blog

Microsoft Hybrid Cloud blogsite about Management


Leave a comment

#Microsoft Azure Central Monitoring for your Team #Dashboards #Azure #ContainerInsights #Apps

Full Screen Monitoring

When you install Azure Virtual Machines or Kubernetes Clusters in the Microsoft Cloud, It’s important to monitor your workload and keep your IT department in Control for the Business. Metric alerts in Azure Monitor work on top of multi-dimensional metrics. These metrics could be platform metrics, custom metrics, popular logs from Azure Monitor converted to metrics and Application Insights metrics.

When you have important alerts, you want to take action based on your rules.

Take action on Alerts

Make your Own rules based on Alerts.

IT Department of a company has most of the time different teams with each having it’s own responsibility of workloads in the Microsoft Cloud. For example, the Servicedesk is supporting the Business and they like to see if all the Services are up and running for the Business. The Infrastructure Team wants the same, but on deep level components of the Services like Memory, Network, Storage, CPU, Performance, Availability and more. The Technical Application Team is interested if the application is running and working with all the Interfaces, Databases, and/or Azure Pipelines.

Each Team can build there own Azure Dashboard(s) in the Microsoft Cloud.

Here I Have made an easy example of my Windows Server 2019 Virtual Machines and my Azure Kubernetes Cluster in One Microsoft Azure Dashboard :

You can Start from Azure Monitor Metrics

Or you can Start from the Virtual Machine Blade here.

When you have your Azure Monitor metrics ready with the right information then you can create it in your Azure Dashboard for your Team.

 

Select another Dashboard.

Create your Own Dashboard.

Now we have the first VM with CPU percentage in the Azure Dashboard.

Here I have added More Virtual Machines to the Same Metric Chart.

When you have Azure Kubernetes Cluster to monitor :

From here you can Add Container Insights information into your Azure Dashboard :

Adding Azure Monitor Container Insights of KubeCluster01

The Azure Monitor Container Insights logs for your Dashboard information, with Pin to Dashboard.

 

When you right click with your mouse on the dashboard, you can edit your dashboard with more Azure Resources
from the tile Gallery. Here you can read more about creating your Own Azure Dashboard with Action Rules.

Azure Monitor for containers is a feature designed to monitor the performance of container workloads deployed to either Azure Container Instances or managed Kubernetes clusters hosted on Azure Kubernetes Service (AKS). Monitoring your containers is critical, especially when you’re running a production cluster, at scale, with multiple applications.
Azure Monitor for containers gives you performance visibility by collecting memory and processor metrics from controllers, nodes, and containers that are available in Kubernetes through the Metrics API. Container logs are also collected. After you enable monitoring from Kubernetes clusters, these metrics and logs are automatically collected for you through a containerized version of the Log Analytics agent for Linux and stored in your Log Analytics workspace.

 

Read here more about Azure Container Insights with Live Logs.

Follow and Join the community on LinkedIn

JOIN Azure DevOps Community 

JOIN Containers in the Cloud Community 

JOIN Azure Monitor and #Security Community 


Leave a comment

Installing and Maintaining #Azure Kubernetes Cluster with Multi Pool Nodes (Preview) for #Linux #Winserv Containers

Install AKS-Preview extension via Azure Cloudshell

NOTE ! This is a Preview blogpost, do not use in production! (only for test environments)

To create an AKS cluster that can use multiple node pools and run Windows Server containers, first enable the WindowsPreview feature flags on your subscription. The WindowsPreview feature also uses multi-node pool clusters and virtual machine scale set to manage the deployment and configuration of the Kubernetes nodes. Register the WindowsPreview feature flag using the az feature register command as shown in the following example:

I Have registered the following Preview Features from the Azure CloudShell :

  • az feature register –name WindowsPreview –namespace Microsoft.ContainerService
  • az feature register –name MultiAgentpoolPreview –namespace Microsoft.ContainerService
  • az feature register –name VMSSPreview –namespace Microsoft.ContainerService

This will take a few minutes and you can check the registration with the following command :

az feature list -o table –query “[?contains(name, ‘Microsoft.ContainerService/WindowsPreview’)].{Name:name,State:properties.state}”

When ready, refresh the registration of the Microsoft.ContainerService resource provider using the az provider register command:

 

Creating Azure Kubernetes Cluster

First you create a Resource Group in the right Azure Region for your AKS Cluster to run:

az group create –name myResourceGroup –location eastus

I created Resource Group KubeCon in location West-Europe.

Creating KubeCluster

With the following CLI command in Azure Cloudshell, I created the Kubernetes Cluster with a single node:

$PASSWORD_WIN=”P@ssw0rd1234″

az aks create –resource-group KubeCon –name KubeCluster –node-count 1 –enable-addons monitoring –kubernetes-version 1.14.0 –generate-ssh-keys –windows-admin-password $PASSWORD_WIN –windows-admin-username azureuser –enable-vmss –network-plugin azure

The Azure Kubernetes Cluster “KubeCluster” is created in the resource group “KubeCon” in a view minutes.

Adding a Windows Pool

Adding a Windows Server Node Pool

By default, an AKS cluster is created with a node pool that can run Linux containers. Use az aks nodepool add command to add an additional node pool that can run Windows Server containers.

az aks nodepool add –resource-group KubeCon –cluster-name KubeCluster –os-type Windows –name pool02 –node-count 1 –kubernetes-version 1.14.0

I added the Windows Server Pool via the Azure Portal.

When this has finished, we have an Azure Kubernetes Cluster with Multi node Pools for Linux and Windows Server Containers :

Pools for Linux and Windows Server Containers

The following will be created in Microsoft Azure too :

VNET, NSG and Virtual Machine Scale Set (VMSS)

Azure Monitor for containers is a feature designed to monitor the performance of container workloads deployed to either Azure Container Instances or managed Kubernetes clusters hosted on Azure Kubernetes Service (AKS). Monitoring your containers is critical, especially when you’re running a production cluster, at scale, with multiple applications.
Azure Monitor for containers gives you performance visibility by collecting memory and processor metrics from controllers, nodes, and containers that are available in Kubernetes through the Metrics API. Container logs are also collected. After you enable monitoring from Kubernetes clusters, these metrics and logs are automatically collected for you through a containerized version of the Log Analytics agent for Linux and stored in your Log Analytics workspace.

Container Insights Monitoring of the Linux Node

Container Insights Monitoring of the Windows Server Node

Here you can read all about Azure Monitoring with Container Insights

Scaling Multi Pool Node AKS Cluster

To Scale your Multi Pool Node AKS Cluster, you need to do this via the Azure Cloudshell CLI.

Here you see the two pools ( Linux and Windows Server)

Scaling up the Windows Server Pool

You can do this with the following command :

az aks nodepool scale –resource-group KubeCon –cluster-name KubeCluster –name pool02 –node-count 2 –no-wait

Scaling

Scaling Succesful after a few minutes

Upgrading Windows Server Pool Instance

When I scaled the Cluster there was a update released by Microsoft.

Windows Server Pool Instances

Just Click on Upgrade

Upgrade is Done 😉


Leave a comment

Don’t Miss this Awesome #Microsoft BUILD 2019 Event! #Azure #Cloud #MSBuild

Download the Mobile App here

Seattle May 6-8, 2019

Watch live as technology leaders from across industries share the latest breakthroughs and trends, and explore innovative ways to create solutions. After the keynotes, select Microsoft Build sessions will stream live—dive deep into what’s new and what’s next for developer tools and tech.

 

Watch the livestream here: https://www.microsoft.com/en-us/build

  • Discover and experience new ways to build, modernize, and migrate your applications. Get hands-on experiences with tools like Azure Kubernetes Service (AKS) that can help you dynamically scale your application infrastructure.
  • Quickly and easily build, train, and deploy your machine learning models using Azure Machine Learning, Azure Databricks, and ONNX. Uncover insights from all your content—documents, images, and media—with Azure Search and Cognitive Services.
  • Join Microsoft for hands-on learning to discover how tools like Visual Studio live share can help you collaborate with your peers instantly.
  • Come learn how to build an end-to-end continuous delivery pipeline that is fast and secure with Azure DevOps technologies. Spend less time maintaining your toolset and more time focusing on customer value.
  • Understand how frameworks like Xamarin and .NET can help you reach customers on all platforms. Learn how to use the same languages, APIs, and data structures across all mobile development platforms.
  • Learn how mixed reality helps you bring your work and data to life when you need it, and where you need it. Start building secure, collaborative mixed reality solutions today using intelligent services, best-in-class hardware, and cross-platform tools.
  • Learn to connect your devices to the cloud using flexible IoT solutions that integrate with your existing infrastructure. Collect untapped data and form valuable insights that help you create better customer experiences and generate new streams of revenue.

Book your Microsoft Build 2019 sessions via the BUILD Scheduler

Vision Keynote by CEO Satya Nadella

 

 

Windows Insider Program

Azure DevOps

Azure Monitor

Containers

Have a good look which sessions to follow because there are 431 sessions 👍🚀

JOIN Azure DevOps Community

https://www.linkedin.com/groups/12139259/ 

JOIN Containers in the Cloud Community

https://www.linkedin.com/groups/13539967/ 

JOIN Azure Monitor and Security Community https://www.linkedin.com/groups/13517115/ 


Leave a comment

How to monitor your #Kubernetes clusters – Best Practices Series #AKS #AzureMonitor

Get best practices on how to monitor your Kubernetes clusters from field experts in this episode of the Kubernetes Best Practices Series. In this intermediate level deep dive, you will learn about monitoring and logging in Kubernetes from Dennis Zielke, Technology Solutions Professional in the Global Black Belts Cloud Native Applications team at Microsoft.

Multi-cluster view from Azure Monitor

Azure Monitor provides a multi-cluster view showing the health status of all monitored AKS clusters deployed across resource groups in your subscriptions. It shows AKS clusters discovered that are not monitored by the solution. Immediately you can understand cluster health, and from here you can drill down to the node and controller performance page, or navigate to see performance charts for the cluster. For AKS clusters discovered and identified as unmonitored, you can enable monitoring for that cluster at any time.

Understand AKS cluster performance with Azure Monitor for containers

Container Live Logs provides a real-time view into your Azure Kubernetes Service (AKS) container logs (stdout/stderr) without having to run kubectl commands. When you select this option, new pane appears below the containers performance data table on the Containers view, and it shows live logging generated by the container engine to further assist in troubleshooting issues in real time.
Live logs supports three different methods to control access to the logs:

AKS without Kubernetes RBAC authorization enabled
AKS enabled with Kubernetes RBAC authorization
AKS enabled with Azure Active Directory (AD) SAML based single-sign on

You even can search in the Container Live Logs for Troubleshooting and history.

View Container Live logs with Azure Monitoring for AKS | Kubernetes | Containers 


Leave a comment

Bye Bye 2018 vs Hello 2019 #MVPbuzz #Azure #Cloud #AzureDevOps #Education #Code #Analytics

Happy New Year !

First of all Thank you for following me and Sharing Microsoft Cloud and Datacenter Management content on Social Media 🙂 Sharing & Learning Together is Better. 

Here some work I did for the Community in 2018 :

  •  I wrote 62 Blogposts in 2018 on https://mountainss.wordpress.com and shared them on LinkedIn,
    Twitter, Facebook and Microsoft Tech Community
  • Made a Blogpost Serie about :
    It’s all about your Datacenter transition to the Cloud by Design and by Security.
    Microsoft Azure Hub-Spoke model by Enterprise Design

  • Started Azure DevOps Community Group on LinkedIn
  • Together with Community Groups :  Microsoft Azure Monitor and Security for Hybrid IT and
    Containers in the Cloud

    @Jamesvandenberg
  • Welcome 577 New Followers on Twitter of the 5904 Followers 🙂
    More then 2.807.000 Tweet impressions in One year !
  • Started with Friday is MVPbuzz Day for Education to get Azure Cloud in the Classroom, working together with Teachers and Students in my Free time.
  • Working with Microsoft Learn in Teams for the Students.
  • Meetings and Speaking for Education, all about Azure and AzureStack Technologies.
  • Conferences, like the Global MVP Summit 2018, DevOps Amsterdam, Community Group meetings.
    Microsoft Ignite, Microsoft Build, Microsoft Connect events.
  • Almost every week Microsoft Product Group Intervention (PGI) sessions Online.
  • Sharing the News every Day via Twitter, Facebook, LinkedIn, Microsoft Tech Community, Blog

But what is coming in 2019 ?

Rocking with Azure in the Classroom !

I will continue every day sharing knowledge with the Community and continue my Free work on MVPbuzz Friday for Education to get Azure Cloud Technology in the Classroom for Teachers and Students.
The trend I see for 2019 is more Infrastructure and Security by Code with Microsoft Azure DevOps
and of course you have to be in Control with Microsoft Azure Monitor

I will write a blogpost in January 2019 about Microsoft Azure Hub-Spoke model by Enterprise Design 4 of 4 : Optimize your Azure Workload.

More Items in 2019 to come :

  • Microsoft Azure Security Center for Hybrid IT
  • Windows Server 2019 in combination with Azure Cloud Services.
  • More on Containers in the Cloud
  • Azure Stack and ASDK
  • Integration with Azure Cloud.
  • API Management
  • Azure DevOps Pipelines and Collabration
  • Azure IoT for Smart Cities and Buildings combined with AI Technology

2019 will be a Great year again with New Microsoft Technologies and Features for your business.


Leave a comment

View Container Live logs with #Azure Monitoring #AKS #Kubernetes #Containers #AzureDevOps

Monitoring Azure Kubernetes Cluster

Azure Monitor for containers is a feature designed to monitor the performance of container workloads deployed to either Azure Container Instances or managed Kubernetes clusters hosted on Azure Kubernetes Service (AKS). Monitoring your containers is critical, especially when you’re running a production cluster, at scale, with multiple applications.
Azure Monitor for containers gives you performance visibility by collecting memory and processor metrics from controllers, nodes, and containers that are available in Kubernetes through the Metrics API. Container logs are also collected. After you enable monitoring from Kubernetes clusters, these metrics and logs are automatically collected for you through a containerized version of the Log Analytics agent for Linux and stored in your Log Analytics workspace.

Here you find awesome documentation about Understanding AKS cluster performance with Azure Monitor for containers

What I really like is that you now can see the Container Live logs from the Azure portal and see what is going on in the background of a Container 🙂

Activate Azure Kubernetes Container Live Logs

Here you see the Container Live logs

This feature provides a real-time view into your Azure Kubernetes Service (AKS) container logs (stdout/stderr) without having to run kubectl commands. When you select this option, new pane appears below the containers performance data table on the Containers view, and it shows live logging generated by the container engine to further assist in troubleshooting issues in real time.
Live logs supports three different methods to control access to the logs:

  1. AKS without Kubernetes RBAC authorization enabled
  2. AKS enabled with Kubernetes RBAC authorization
  3. AKS enabled with Azure Active Directory (AD) SAML based single-sign on

You even can search in the Container Live Logs for Troubleshooting and history :

Search on ssh

Azure Monitor for containers uses a containerized version of the Log Analytics agent for Linux. After initial deployment, there are routine or optional tasks you may need to perform during its lifecycle.
Because of this agent you can work with Log Analytics in Azure Monitor :

Log Analytics on Containers.

Here you find more on Log Analytics query language

Conclusion :

When you have your production workload running on Azure Kubernetes Clusters, It’s important to monitor to keep you in Control of the solution in Microsoft Azure and watch for improvements like performance for the business. With Container Live logs you can see what is going on in the Containers when you have issues and that’s great for troubleshooting to get your problem solved fast. Get your workload into Azure Containers and make your Azure DevOps CI/CD Pipelines in the Cloud.

Join the LinkedIn Community Groups for :

Containers in the Cloud

Azure DevOps Community

Microsoft Azure Monitor & Security for Hybrid IT


Leave a comment

Getting started with #Microsoft Azure Cognitive Services in #Containers #Azure #AI #AKS #Docker

Microsoft Visual Studio Code Tools for AI

With container support, customers can use Azure’s intelligent Cognitive Services capabilities, wherever the data resides. This means customers can perform facial recognition, OCR, or text analytics operations without sending their content to the cloud. Their intelligent apps are portable and scale with greater consistency whether they run on the edge or in Azure.

Bringing AI to the Edge via  Corporate Vice President, Azure AI Eric Boyd

Get started with these Azure Cognitive Services Containers

Building solutions with machine learning often requires a data scientist. Azure Cognitive Services enable organizations to take advantage of AI with developers, without requiring a data scientist. We do this by taking the machine learning models and the pipelines and the infrastructure needed to build a model and packaging it up into a Cognitive Service for vision, speech, search, text processing, language understanding, and more. This makes it possible for anyone who can write a program, to now use machine learning to improve an application. However, many enterprises still face challenges building large-scale AI systems. Today Microsoft announced container support for Cognitive Services, making it significantly easier for developers to build ML-driven solutions.

Microsoft got the following Containers :

  • Text Analytics Containers
  • Face Container
  • Recognize Text Container

More information from Director of Program Management Applied AI Lance Olson here

Start with Installing and running Containers

Request access to the private container registry

You must first complete and submit the Cognitive Services Vision Containers Request form to request access to the Face container. The form requests information about you, your company, and the user scenario for which you’ll use the container. Once submitted, the Azure Cognitive Services team reviews the form to ensure that you meet the criteria for access to the private container registry.

Important !

You must use an email address associated with either a Microsoft Account (MSA) or Azure Active Directory (Azure AD) account in the form. If your request is approved, you then receive an email with instructions describing how to obtain your credentials and access the private container registry.

Read more about installing the Containers here

The Face container uses a common configuration framework, so that you can easily configure and manage storage, logging and telemetry, and security settings for your containers.
Configuration settings
Configuration settings in the Face container are hierarchical, and all containers use a shared hierarchy, based on the following top-level structure:

  • ApiKey
  • ApplicationInsights
  • Authentication
  • Billing
  • CloudAI
  • Eula
  • Fluentd
  • Logging
  • Mounts

Read more here about Configuring the Containers

Follow Containers in the Cloud Community Group