mountainss Cloud and Datacenter Management Blog

Microsoft Hybrid Cloud blogsite about Management


Leave a comment

#Microsoft Azure Hub-Spoke model by Enterprise Design 2 of 4 Lift and Shift #Azure #Hyperv #VMware

Microsoft Azure Hybrid Cloud Architecture HUB-Spoke Model

Microsoft Azure Hub-Spoke model

This blogpost about Microsoft Azure Hub-Spoke model by Enterprise Design 2 of 4 “Lift and Shift” is part of a Datacenter transition to Microsoft Azure Intelligent Cloud. It’s talking about Azure Architecture, Security, Assessment, Azure Policy, and implementation of the design. Here you find the first blogposts :

It’s important for your business to have your Azure Architectural design with Security in place before you start your “Lift and Shift” actions, think about Identity Management and Provisioning, RBAC for your Administrators and Super Users with Two-Factor Authentication. Security with Network Security Groups and Firewalls 

Azure Multi-Factor-Authentication (MFA)

Microsoft Azure Hub-Spoke model : “Lift and Shift”

 

Microsoft Azure HUB subscription for “Lift and Shift”

To “Lift and Shift” to the Azure HUB Subscription we have the following in place by Design :

  1. Azure Scaffold and Hierarchy (Governance)
  2. Virtual Networks (VNET) with the Subnets and IP-Number plan
  3. ExpressRoute VPN Connection with a backup failover Site-2-Site VPN connection to Azure.
  4. Resource Groups, like Active Directory, ADFS Farm, Authentication, SQL Backend.
  5. Resource Policies
  6. Resource Locks
  7. Network Security Groups (NSG)
  8. DNS
  9. Azure Firewall
  10. Azure internal Load Balancers.
  11. Azure Storage Accounts
  12. Azure Virtual Machine sizes
  13. Azure Virtual Machine Image
  14. Managed Disks and Encryption.
  15. Redundancy for Virtual Machines
  16. Azure Key Vault for Encryption.
  17. Azure Recovery Vault ( Backup)
  18. Azure Policy
  19. Managed Identities, Azure MFA, RBAC,ADFS
  20. Azure Monitor
  21. Azure Naming Convention
  22. Azure Tagging
  23. Azure Cost Management
  24. ARM (JSON) Deployment template (for New requests)

To help you more with your Azure Virtual Datacenter have a look here

 

Azure Hierarchy

Azure Scaffold

When creating a building, scaffolding is used to create the basis of a structure. The scaffold guides the general outline and provides anchor points for more permanent systems to be mounted. An enterprise scaffold is the same: a set of flexible controls and Azure capabilities that provide structure to the environment, and anchors for services built on the public cloud. It provides the builders (IT and business groups) a foundation to create and attach new services keeping speed of delivery in mind. Read more hereI did the “Lift and Shift” between quotes because it’s important to follow the process workflow to be successful in your Datacenter transition to the Microsoft Azure Cloud.

 

Here you find all the Microsoft Azure Migration information

 

 

App Migration to Azure: Your options explained by Jeremy Winter

The Azure Migrate service assesses on-premises workloads for migration to Azure. The service assesses the migration suitability of on-premises machines, performs performance-based sizing, and provides cost estimations for running on-premises machines in Azure. If you’re contemplating lift-and-shift migrations, or are in the early assessment stages of migration, this service is for you. After the assessment, you can use services such as Azure Site Recovery and Azure Database Migration Service, to migrate the machines to Azure.

In your datacenter you got all kind of different workloads and solutions like :

  • Hyper-V Clusters
  • VMware Clusters
  • SQL Clusters
  • Print Clusters
  • File Clusters
  • Web Farm
  • Two or three tiers solutions
  • Physical Servers
  • Different Storage solutions

When you do your Datacenter Assessment it’s important to get your workloads visible, because “Lift and Shift” with Azure Site Recovery (ASR) of a Virtual Machine is an different scenario then SQL database migration to Azure. That’s why Microsoft has different tooling like :

To get your dependencies in your Datacenter on the map, Microsoft has Azure Service Maps.

Service Map automatically discovers application components on Windows and Linux systems and maps the communication between services. With Service Map, you can view your servers in the way that you think of them: as interconnected systems that deliver critical services. Service Map shows connections between servers, processes, inbound and outbound connection latency, and ports across any TCP-connected architecture, with no configuration required other than the installation of an agent.

This is very handy to get insides of your Datacenter communication workloads.

More information on using Azure Service Maps here

Installation example of Hyper-V Virtual Machines with ASR

In the following step-by-step guide we will install the Azure Site Recovery Agent on a Hyper-V host and migrate a virtual machine to Microsoft azure in a “Lift and Shift” way.

First create a Recovery Services Vault => Click Add.

Then you go to your new created Recovery Vault and click on Getting started for Site Recovery. => Prepare infrastructure and follow the steps.

When you have selected Hyper-V VM to Azure, the next step is the ASR Deployment Planner tool kit. Here you find more information on Azure Site Recovery Deployment Planner user guide for Hyper-V-to-Azure production deployments.

Then in step 3 you will make your Hyper-V Site in Microsoft azure with the Right Hyper-V Servers.

Give your Hyper-V Site the right name, especially when you have a lot of Hyper-V Clusters with Different workloads.

Here is where the registration begins with the Azure Site Recovery (ASR) Agent installation on your Hyper-V Host.
Follow the five steps and make sure your Hyper-V Node can access Azure via secure port 443(https) via Proxy or firewall rules.

Install as Administrator the AzureSiteRecoveryProvider.exe file on the Hyper-V host.

Click on Next

Choose your Installation location and Click on Install.

The Azure Site Recovery agent is installed and need to be registered with your Azure Recovery Vault.
For this you need the key file from the Azure portal to download at step 4. Click on Register.

Browse to your downloaded key file from the Azure Portal Recovery Vault and click on Next.

When you have a proxy you can select that, otherwise select Next.

Now your Azure ASR Agent on Hyper-V is registered with your Azure Site Recovery Vault.

In the Azure Portal you will see your Hyper-V Node, in my Demo LAB it’s WAC01.MVPLAB.LOCAL.

In the next step you can choose an existing Storage account, or a new one with different specifications.

Check also after storage your network in azure.

In this step we create the replication policy.

Set your own settings.

The Replication policy is added to the configuration.

When you click on OK the Infrastructure is done.

We are now going to enable the replication :

Select your Source and location.

here you select your target Storage account, Resource Group and Network.

The connections are made between Hyper-V, ASR Vault and Storage.

Select the Virtual Machine(s) from the Hyper-V host to replicate for migration with ASR

Configure the properties.

Click on OK

From here the Replication will begin from Hyper-V Host to Azure  🙂

Azure Sire Recovery Replication Job status.

Replicated item(s)

To make your recovery plan and do the failover for migration to azure, you have to wait until the first replication is done for 100%.

Azure Site Recovery Plan for failover (Migration)

Make recovery Plan.

Click OK

The Target in the recovery plan can only be selected when the first replication is done.

Overview of the Azure Site Recovery Migration failover.

From the Hyper-V Host you can pause or see the replication health status.

Hyper-V Health Status

Azure Migrate Virtual Machines using Azure Site Recovery video with Microsoft Jeff Woolsey

Microsoft Azure Data Migration Assistant

To migrate your SQL Backend to Microsoft Azure, use this step-by-step instructions help you perform your first assessment for migrating to on-premises SQL Server, SQL Server running on an Azure VM, or Azure SQL Database, by using Data Migration Assistant.

Conclusion :

“Lift and Shift” Migration of your complete datacenter exists of different scenarios for your workloads to Microsoft Azure. With that said, Microsoft has for each scenario tooling available to get the job done. It’s all about a good Architectural Design, Security in place, People and process to get your Intelligent Azure Cloud up and running for your Business.

Next Blogpost Microsoft Azure Hub-Spoke model by Enterprise Design 3 of 4 :
SQL assessment and Data Migration to Azure

Advertisements


Leave a comment

BlueHat v18 Hardening #Hyperv through offensive security research #Security #Bluehatv18 #Bluehat

BlueHat v18 || Hardening Hyper-V through offensive security research

From Microsoft Security Response Center (MSRC) :

“Humans are susceptible to social engineering. Machines are susceptible to tampering. Machine learning is vulnerable to adversarial attacks. Singular machine learning models can be “gamed” leading to unexpected outcomes.”

In this talk, they compare the difficulty of tampering with cloud-based models and client-based models. Then discuss how they develop stacked ensemble models to make machine learning defenses less susceptible to tampering and significantly improve overall protection for customers. They talk about the diversity of base ML models and technical details on how they are optimized to handle different threat scenarios. Lastly, they describe suspected tampering activity they have witnessed using protection telemetry from over half a billion computers, and whether mitigation worked.

BlueHat v18 Content Now Available


Leave a comment

#Microsoft Azure Hub-Spoke model by Enterprise Design 1 of 4 #Azure #Cloud

 

Azure Hub-Spoke Architecture

Microsoft Azure Hub-Spoke Architecture

This Enterprise reference architecture shows how to implement a hub-spoke topology in Azure. The hub is a virtual network (VNet) in Azure that acts as a central point of connectivity to your on-premises network. The spokes are VNets that peer with the hub, and can be used to isolate workloads. Traffic flows between the on-premises datacenter and the hub through an ExpressRoute or VPN gateway connection.

We only use the Azure Private peering

For this Hybrid Cloud Strategy we made four Microsoft Azure Subscriptions via the EA Portal :

  1. Azure HUB Subscription for the connectivity via Azure ExpressRoute to On-premises Datacenter.
  2. Azure Spoke 1 for Production workload and Cloud Services
  3. Azure Spoke 2 for Test and Acceptance Cloud Services
  4. Azure Spoke 3 for Future plans

The naming convention rules and restrictions for Azure resources and a baseline set of recommendations for naming conventions. You can use these recommendations as a starting point for your own conventions specific to your needs.

The choice of a name for any resource in Microsoft Azure is important because:

  • It is difficult to change a name later.
  • Names must meet the requirements of their specific resource type.

Consistent naming conventions make resources easier to locate. They can also indicate the role of a resource in a solution.The key to success with naming conventions is establishing and following them across your applications and organizations.

Azure connectivity and RBAC Identity

This tenant is federated with via ADFS and Azure Connect to Office 365. Identity management is provisioned
via Microsoft Identity Manager 2016 (MIM2016). With this already in place, we can Configure Microsoft Azure RBAC in the subscriptions.

Access management for cloud resources is a critical function for any organization that is using the cloud. Role-based access control (RBAC) helps you manage who has access to Azure resources, what they can do with those resources, and what areas they have access to.

RBAC is an authorization system built on Azure Resource Manager that provides fine-grained access management of resources in Azure.

Business Development

For Business Development we have a separated Active Directory in one forest and also federated via ADFS to Microsoft Office 365. For this environment we build one Azure subscription with a temporary Site-to-Site VPN connection to On-premises datacenter for the “Lift and Shift” migration via Azure-Site-Recovery (ASR)

S2S VPN IKE v2 tunnel with Cisco and Azure.

Azure Virtual Networks

Next step is to build the connections between the Azure HUB Subscription and the Azure Spoke subscription(s) when every Microsoft Azure subscription has It’s own Virtual Network (VNET). This is called VNET peering.

Virtual network peering enables you to seamlessly connect two Azure virtual networks. Once peered, the virtual networks appear as one, for connectivity purposes. The traffic between virtual machines in the peered virtual networks is routed through the Microsoft backbone infrastructure, much like traffic is routed between virtual machines in the same virtual network, through private IP addresses only. Azure supports:

  • VNet peering – connecting VNets within the same Azure region
  • Global VNet peering – connecting VNets across Azure regions

Here you see my step-by-step VNET peering creation from HUB to Spoke 1 :

Go to the VNET of the Azure HUB Subscription. and then to Peerings => Add.

Here you make the connection with Spoke 1 Azure subscription.

For Azure HUB is Peering to Spoke 1 Done.

Now we go to the VNET of Azure Subscription Spoke 1 to make the connection.

Go to VNET => Peerings => Click on Add in the Azure Spoke 1 Subscription

Connect here to the Azure HUB

The VNET Peering between Azure HUB subscription and Spoke 1 is Connected.

In this order you have to make the other VNET Peerings from the Azure HUB subscription to the other Spoke Subscriptions so that the network connectivity between VNETs is working. Because we have the Azure Internet Edge in the HUB for the other subscriptions.

In the Azure Reference Architecture we also do Security by Design in the Cloud with Firewall and Azure Network Security Groups (NSG) and every Azure component get it’s own Tag for Security Groups and Billing – Usage.

Azure Storage

In every Microsoft Azure Subscription (HUB and Spoke ) we created a Storage Account. You can choose for different kind of storage in Microsoft Azure.

Durable and highly available. Redundancy ensures that your data is safe in the event of transient hardware failures. You can also opt to replicate data across datacenters or geographical regions for additional protection from local catastrophe or natural disaster. Data replicated in this way remains highly available in the event of an unexpected outage.
Secure. All data written to Azure Storage is encrypted by the service. Azure Storage provides you with fine-grained control over who has access to your data.
Scalable. Azure Storage is designed to be massively scalable to meet the data storage and performance needs of today’s applications.
Managed. Microsoft Azure handles maintenance and any critical problems for you.
Accessible. Data in Azure Storage is accessible from anywhere in the world over HTTP or HTTPS. Microsoft provides SDKs for Azure Storage in a variety of languages — .NET, Java, Node.js, Python, PHP, Ruby, Go, and others — as well as a mature REST API. Azure Storage supports scripting in Azure PowerShell or Azure CLI. And the Azure portal and Azure Storage Explorer offer easy visual solutions for working with your data.

Azure Storage includes these data services:
Azure Blobs: A massively scalable object store for text and binary data.
Azure Files: Managed file shares for cloud or on-premises deployments.
Azure Queues: A messaging store for reliable messaging between application components.
Azure Tables: A NoSQL store for schemaless storage of structured data.

Creating your Azure Storage accounts by Design.

One of our Architecture Security by Design policy, is to Encrypt all the storage in Azure via Microsoft Azure Key vault.

Deploying Azure IaaS Virtual Machine with ARM Templates

Enterprise organizations with more then ten employees managing IT datacenters are working by process and order to do the job for the business. When they are all using the Azure Portal and deploy Virtual Machines manually you will get a mess and things can go wrong. In Microsoft Azure you have the Azure Resource Manager for deploying  JSON ARM Templates. With these Azure Resource Manager Templates you can automate your workload deployments in Microsoft Azure. For example : We build a JSON template to deploy a Windows Server in the right Azure Subscription in the right Azure Resource Group and with the following extensions to it :

  • Antimalware agent installed
  • Domain joined in the right OU (Active Directory)
  • Azure Log analytics agent installed ( Connected to Azure Monitor and SCOM )
  • Encryption by default.

Using with our Azure naming conventions and Azure policy we always deploy consistent without making mistakes or by wrong typing in the Azure portal. When you write and make your ARM templates for different workloads, you can store them in Azure DevOps Repo ( Repository) and you can connect your private repo to GitHub.

Making ARM templates works really Awesome with Microsoft Visual Studio Code which is opensource and free of charge. You can add your favorite VSC extensions to work with like Azure Resource Manager.

 Our Azure ARM Template to deploy Virtual Machines into Azure HUB-Spoke model with VSC

Azure monitoring and Recovery Service Vault

To manage your Azure Hybrid Cloud environment you have to monitor everything to keep in control of your Virtual Datacenter. And of course you have to plan your business continuity with Azure Recovery Services (Backup) by Design. We made in every Azure Subscription an Azure Recovery Services Vault for making Backups. This is because you don’t want backup traffic over your VNET peering’s. In the Azure HUB subscription we made a second Azure Site Recovery (ASR) Vault for the “Lift & Shift” migration of On-premises Virtual Machines to the landing zone in Azure HUB.

With Microsoft Azure Monitor we use Log Analytics and Service maps and with the same OMS agent on the Virtual Machine, we still can use Microsoft System Center Operation Manager (SCOM) connected to the same agent 🙂

When you have 45 locations, 45.000 students with BYOD and 10.000 Managed workstations, you will monitor 24 x 7 to keep everything running for your Business. Monitoring Express Route with a Backup connection is a must for your Hybrid Virtual Datacenter. Here you have more information about monitoring Express Route Circuit

Monitoring our Express Route

With this all installed in Microsoft Azure by Design, we have the policy Security First !

Microsoft Azure Security Center

Azure Security Center provides unified security management and advanced threat protection across hybrid cloud workloads. With Security Center, you can apply security policies across your workloads, limit your exposure to threats, and detect and respond to attacks.

We are already installing Azure Threat Protection (ATP) for our On-premises Datacenter for Security.

Azure Security Center

We still have a lot to configure in Microsoft Azure to get the Basic Architecture Design in place. When that is done, I will make three more blogposts about this datacenter transformation :

  • “Lift and Shift” migration with ASR for Virtual Machines on Hyper-V and VMware.
  • SQL assessment and Data Migration to Azure
  • Optimize of all Workloads in Microsoft Azure.

Hope this blogpost will help you too with your Datacenter transition to Microsoft Azure Cloud.


Leave a comment

Watch the Live Stream Today of #Microsoft Ignite 2018 in Orlando 24 – 28 September #MSIgnite #Azure #Cloud #DevOps and More


Don’t miss the Live Stream of Microsoft Ignite 2018

Get the latest insights and skills from technology leaders and practitioners shaping the future of cloud, data, business intelligence, teamwork, and productivity. Immerse yourself with the latest tools, tech, and experiences that matter, and hear the latest updates and ideas directly from the experts.

Watch live https://www.microsoft.com/en-us/ignite as Microsoft CEO Satya Nadella lays out his vision for the future of tech, then watch other Microsoft leaders explore the most important tools and technologies coming in the next year. After the keynotes, select Microsoft Ignite sessions will stream live—take a deep dive into the future of your profession.


More then 700+ Sessions and 100+ Expert-led and self-paced workshops


#MSIgnite



Leave a comment

Installing #Azure Service Fabric Cluster on Windows Server 2019 Insiders #Containers #Winserv

Microsoft Azure Service Fabric Cluster

Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage scalable and reliable microservices and containers. Service Fabric also addresses the significant challenges in developing and managing cloud native applications. Developers and administrators can avoid complex infrastructure problems and focus on implementing mission-critical, demanding workloads that are scalable, reliable, and manageable. Service Fabric represents the next-generation platform for building and managing these enterprise-class, tier-1, cloud-scale applications running in containers.

In the following Step-by-Step Guide I created a Standalone Microsoft Azure Service Fabric Cluster
on Windows Server 2019 Insiders Preview for DevOps testing :

First I downloaded the Contents of Service Fabric Standalone package for Windows Server here

Several sample cluster configuration files are installed with the setup package. ClusterConfig.Unsecure.DevCluster.json is the simplest cluster configuration: an unsecure, three-node cluster running on a single computer. Other config files describe single or multi-machine clusters secured with X.509 certificates or Windows security. You don’t need to modify any of the default config settings for this tutorial, but look through the config file and get familiar with the settings.

I made the Unsecure three-node Cluster running on Windows Server 2019 Insiders Preview in my MVPLAB.

 

Open Powershell in Administrator modus and run the Script :

.\CreateServiceFabricCluster.ps1 -ClusterConfigFilePath .\ClusterConfig.Unsecure.DevCluster.json -AcceptEULA

Connect-ServiceFabricCluster

 

Service Fabric Explorer (SFX) is an open-source tool for inspecting and managing Azure Service Fabric clusters. Service Fabric Explorer is a desktop application for Windows, macOS and Linux.

I Installed Azure Service Fabric Explorer to visualize the Cluster.

Here we got Azure Service Fabric 3-Node Cluster running on Windows Server 2019 Insiders

Azure Service Fabric CLI

The Azure Service Fabric command-line interface (CLI) is a command-line utility for interacting with and managing Service Fabric entities. The Service Fabric CLI can be used with either Windows or Linux clusters. The Service Fabric CLI runs on any platform where Python is supported.

Prior to installation, make sure your environment has both Python and pip installed.
The CLI supports Python versions 2.7, 3.5, 3.6, and 3.7. Python 3.x is the recommended version, since Python 2.7 will reach end of support soon.

You can download the latest Python version here

Check the Python version and the Pip version by typing :

python –version
Pip –version

The Pip version which is delivered via Python has to be updated with the following command :

python -m pip install –upgrade pip

We now have pip version 18.0 instead of 10.0.1

Installing Service Fabric CLI by command :

pip install -I sfctl

Done ! Service Fabric CLI is installed on my Windows 10 Surface.

sfctl -h 

Now we have installed Microsoft Azure Service Fabric Cluster on Windows Server 2019 Insiders Preview and the Service Fabric CLI on Windows 10, we now can connect to the 3-node Fabric Cluster via CLI.
Because we are working under Windows 10 and not on the host itself we have to set an endpoint connection :

sfctl cluster select –endpoint http://192.168.2.15:19080

sfctl cluster health

sfctl node list

Microsoft Visual Studio 2017 Enterprise and Service Fabric SDK

As a Developer or DevOps you like to work from Microsoft Visual Studio to deploy your Apps, Microservices or Containers to the Azure Service Fabric Cluster.

You need to install the Service Fabric SDK in Visual Studio before you can deploy :

Select Service Fabric Application at New Project

Visual Studio 2017 Enterprise : Service Fabric SDK must be installed

Installing Microsoft Azure Service Fabric SDK

Done.

Now you can make your Service Fabric Container.

Happy Developing 😉

More information on Microsoft Azure Service Fabric Cluster :

Service Fabric on GitHub

Add or remove nodes to a standalone Service Fabric cluster running on Windows Server :

Scaling your Azure Service Fabric Cluster

More info :

Microsoft Azure Service Fabric documentation

Microsoft Azure Service Fabric Cluster Learning Path


Leave a comment

#Microsoft Azure Security Center Investigation Dashboard (Preview) #Azure #Security #ASC #Cloud


Yesterday I was playing with Mimikatz (Hackertool) for Security pen tests and it was not working because Azure Security Center Quarantined the file 🙂

On my Surface I got an Azure monitoring Agent running

Microsoft Azure Security Center Investigation Dashboard

The Investigation feature in Security Center allows you to triage, understand the scope, and track down the root cause of a potential security incident.
The intent is to facilitate the investigation process by linking all entities (security alerts, users, computers and incidents) that are involved with the incident you are investigating. Security Center can do this by correlating relevant data with any involved entities and exposing this correlation in using a live graph that helps you navigate through the objects and visualize relevant information.

Microsoft Azure Security Center found also a rare SVCHOST Service on my Surface, and the ASC investigation dashboard gives you great overview of the security risk.

You can Run a Playbook based on this alert Rare SVCHOST Service

Try it yourself, more information about Azure Security Center Investigation Dashboard (Preview) can be found here

Microsoft azure Security Center

 

 


Leave a comment

Deep dive on Windows Server 2019 Updates by @WSV_GUY #Winserv #WAC #Hyperv

Deep Dive into Windows Server 2019 Updates with Jeff Woolsey Principal PM of the Windows Server Team.

What’s New in Windows Server 2019 Insider Preview Builds :

See here what’s New in Windows Server 2019 Insider Preview Builds

Windows Insider Program for Server allows you deploy the Windows Server 2019 Insider Preview builds in your enterprise. The docs cover the new enterprise features we’d like you to test and describes how to do the most common tasks.

Windows Insider Server program:
https://aka.ms/WindowsServerInsider
Download Windows Server 2019 preview:
https://aka.ms/WindowsServer2019Preview
Windows Admin Center:
https://aka.ms/DownloadWAC

Download Windows Server 2019 Insider Preview and Windows Admin Center Now !