mountainss Cloud and Datacenter Management Blog

Microsoft Hybrid Cloud blogsite about Management


Leave a comment

Installing #Azure Service Fabric Cluster on Windows Server 2019 Insiders #Containers #Winserv

Microsoft Azure Service Fabric Cluster

Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage scalable and reliable microservices and containers. Service Fabric also addresses the significant challenges in developing and managing cloud native applications. Developers and administrators can avoid complex infrastructure problems and focus on implementing mission-critical, demanding workloads that are scalable, reliable, and manageable. Service Fabric represents the next-generation platform for building and managing these enterprise-class, tier-1, cloud-scale applications running in containers.

In the following Step-by-Step Guide I created a Standalone Microsoft Azure Service Fabric Cluster
on Windows Server 2019 Insiders Preview for DevOps testing :

First I downloaded the Contents of Service Fabric Standalone package for Windows Server here

Several sample cluster configuration files are installed with the setup package. ClusterConfig.Unsecure.DevCluster.json is the simplest cluster configuration: an unsecure, three-node cluster running on a single computer. Other config files describe single or multi-machine clusters secured with X.509 certificates or Windows security. You don’t need to modify any of the default config settings for this tutorial, but look through the config file and get familiar with the settings.

I made the Unsecure three-node Cluster running on Windows Server 2019 Insiders Preview in my MVPLAB.

 

Open Powershell in Administrator modus and run the Script :

.\CreateServiceFabricCluster.ps1 -ClusterConfigFilePath .\ClusterConfig.Unsecure.DevCluster.json -AcceptEULA

Connect-ServiceFabricCluster

 

Service Fabric Explorer (SFX) is an open-source tool for inspecting and managing Azure Service Fabric clusters. Service Fabric Explorer is a desktop application for Windows, macOS and Linux.

I Installed Azure Service Fabric Explorer to visualize the Cluster.

Here we got Azure Service Fabric 3-Node Cluster running on Windows Server 2019 Insiders

Azure Service Fabric CLI

The Azure Service Fabric command-line interface (CLI) is a command-line utility for interacting with and managing Service Fabric entities. The Service Fabric CLI can be used with either Windows or Linux clusters. The Service Fabric CLI runs on any platform where Python is supported.

Prior to installation, make sure your environment has both Python and pip installed.
The CLI supports Python versions 2.7, 3.5, 3.6, and 3.7. Python 3.x is the recommended version, since Python 2.7 will reach end of support soon.

You can download the latest Python version here

Check the Python version and the Pip version by typing :

python –version
Pip –version

The Pip version which is delivered via Python has to be updated with the following command :

python -m pip install –upgrade pip

We now have pip version 18.0 instead of 10.0.1

Installing Service Fabric CLI by command :

pip install -I sfctl

Done ! Service Fabric CLI is installed on my Windows 10 Surface.

sfctl -h 

Now we have installed Microsoft Azure Service Fabric Cluster on Windows Server 2019 Insiders Preview and the Service Fabric CLI on Windows 10, we now can connect to the 3-node Fabric Cluster via CLI.
Because we are working under Windows 10 and not on the host itself we have to set an endpoint connection :

sfctl cluster select –endpoint http://192.168.2.15:19080

sfctl cluster health

sfctl node list

Microsoft Visual Studio 2017 Enterprise and Service Fabric SDK

As a Developer or DevOps you like to work from Microsoft Visual Studio to deploy your Apps, Microservices or Containers to the Azure Service Fabric Cluster.

You need to install the Service Fabric SDK in Visual Studio before you can deploy :

Select Service Fabric Application at New Project

Visual Studio 2017 Enterprise : Service Fabric SDK must be installed

Installing Microsoft Azure Service Fabric SDK

Done.

Now you can make your Service Fabric Container.

Happy Developing 😉

More information on Microsoft Azure Service Fabric Cluster :

Service Fabric on GitHub

Add or remove nodes to a standalone Service Fabric cluster running on Windows Server :

Scaling your Azure Service Fabric Cluster

More info :

Microsoft Azure Service Fabric documentation

Microsoft Azure Service Fabric Cluster Learning Path

Advertisements


Leave a comment

Connecting Windows Admin Center to #Microsoft Azure Subscription #WAC #Azure

To allow the Windows Admin Center gateway to communicate with Azure to leverage Azure Active Directory authentication for gateway access, or to create Azure resources on your behalf (for example, to protect VMs managed in Windows Admin Center using Azure Site Recovery), you will need to first register your Windows Admin Center gateway with Azure. You only need to do this once for your Windows Admin Center gateway – the setting is preserved when you update your gateway to a newer version.

In the following Step-by-Step Guide you will connect Windows Admin Center to your Microsoft Azure Subscription.

From here you have to copy the device Code and hit the Link device login ( https://aka.ms/devicelogin )
This will make the connection between Windows Admin Center and your Azure Subscription.

Paste the Code into here and Click on Continue.

Sign in your Azure Subscription.

From here you are connected to your Azure Subscription.

Select the right Azure Tenant and Click on Register.

Go to the Azure AD App Registration link.

Click on Settings


Click on Required Permissions and then on Grant permissions

Click on Yes.

Windows Admin Center has now Permission.

Microsoft Windows Admin Center (WAC) Gateway is now registered to your Azure Subscription and you can use Azure AD Multi-Factor Authentication and Azure Site Recovery to protect your Virtual Machines with WAC.

IMPORTANT : Before you can add Microsoft Azure VM’s to Windows Admin Center, you have to set the Azure Network Firewall portal settings and also the Microsoft Windows OS Firewall of the VM.

Networking Settings of the Azure VM.

Open for http WAC port 5985 and for https 5986.

To make the port more Secure you have these Options in the Firewall rule.

Now you have done this for Azure Networking in the portal, you have to do the same in the Firewall settings of the Virtual Machine Inside.

Allow Port 5985 and 5986.

More information about Azure Integration in Windows Admin Center here

 

Here you see my Azure VM in Windows Admin Center On-Premises.

Here you see my Azure Data Science VM in the Cloud via Windows Admin Center 😉


Leave a comment

Scale and Upgrade your Azure Kubernetes Cluster #AKS #Containers #Azure #Kubernetes #DevOps #Cloud


I start with a 2 Node Kubernetes Cluster.

Azure Kubernetes Service (AKS) makes it simple to deploy a managed Kubernetes cluster in Azure. AKS reduces the complexity and operational overhead of managing Kubernetes by offloading much of that responsibility to Azure. As a hosted Kubernetes service, Azure handles critical tasks like health monitoring and maintenance for you. In addition, the service is free, you only pay for the agent nodes within your clusters, not for the masters.

When you have a Web App like Joomla CMS running on Microsoft Azure Kubernetes Services (AKS) and you need more capacity or performance, you can really easy Scale-Up and Scale-Down when needed. It is easy to scale an AKS cluster to a different number of nodes. Select the desired number of nodes and run the az aks scale command. When scaling down, nodes will be carefully cordoned and drained to minimize disruption to running applications. When scaling up, the az command waits until nodes are marked Ready by the Kubernetes cluster.

Scaling your Azure Kubernetes Cluster (AKS)

In the following step-by-step guide I’m scaling my AKS Cluster from 2 nodes to 4 node Kubernetes Cluster :

Here you can scale your Cluster to the right Size
Click on Save to execute.

One AKS Cluster can Scale-Up to 100 vCPU’s and 350 GB of Memory 😉

It’s updating now my 2 Node AKS Cluster to 4 Nodes.
( wait a couple of minutes )

Done !

In Visual Studio Code a got 4 Nodes

In the AKS Cluster Health Monitor you see the Update of the Config.

When you open the Kubernetes Dashboard you see the load on the 4 Nodes.

When you don’t need a 4 Node Cluster performance and/or capacity any more because of the workload, you can scale your Cluster back to 2 Node Cluster for example.

Scaling down to 2 Node AKS Cluster.

Back to 2 Node Azure Kubernetes Cluster.

Just Refresh in Visual Studio Code
2 Node Cluster Again.

And my Joomla CMS Web App is running on 2 Node AKS Cluster.

This was Scaling your Microsoft Azure Kubernetes Cluster (AKS), the Next step-by-step guide I’m Upgrading my Azure Kubernetes Cluster (AKS) to a New version.

Upgrading your Azure Kubernetes Cluster (AKS)

My Current version of AKS is 1.10.5

I’m Upgrading to Kubernetes version 1.10.6
Click on Save to Execute.

After +/- 10 minutes my AKS Cluster was Up-to-Date.

with kubectl version you see the Changes in Visual Studio Code (VSC)


And of course you get notified by the Azure Portal when your Upgrade is Done 🙂

When you like to work from Azure CLI or Cloudshell or VSC you can Upgrade your Kubernetes Cluster from here

More information about Azure Kubernetes Services (AKS) :

Kubernetes versions on GitHub

Kubernetes Documentation

Microsoft Azure AKS Docs

Hope this easy Quick Step-by-Step Guides are helpful for you and your Business.


Leave a comment

#Azure Cloud Shell editor with Visual Studio Code inside (Project Monaco) #VSC #IaC

Azure Cloud Shell is an interactive, browser-accessible shell for managing Azure resources. It provides the flexibility of choosing the shell experience that best suits the way you work. Linux users can opt for a Bash experience, while Windows users can opt for PowerShell. But now with Project Monaco my favorite tool Visual Studio Code is integrated in Microsoft Azure Cloud Shell 🙂 Awesome for Infrastructure as Code (IaC) like I did with Terraform 

Just type Code . in Azure Cloud Shell

Command Palette VSC in Azure Cloud Shell

Just Cool in https://shell.azure.com

More information about Microsoft Azure Cloud Shell :

Azure Cloud Shell Overview docs

Here you find more information about the Monaco Editor

Your Microsoft-managed admin machine in Azure, for Azure


Leave a comment

Download the Cloud Application Architecture Guide #Azure #Cloud #Architects #Apps

This 300 pages guide presents a structured approach for designing cloud applications that are scalable, resilient, and highly available. The guidance in this e-book is intended to help your architectural decisions regardless of your cloud platform, though we will be using Azure so we can share the best practices that we have learned from many years of customer engagements.
In the following chapters, we will guide you through a selection of important considerations and resources to help determine the best approach for your cloud application:

  1. Choosing the right architecture style for your application based on the kind of solution you are building.
  2. Choosing the most appropriate compute and data store technologies.
  3. Incorporating the ten high-level design principles to ensure your application is scalable, resilient, and manageable.
  4. Utilizing the five pillars of software quality to build a successful cloud application.
  5. Applying design patterns specific to the problem you are trying to solve

Download the Cloud Application Architecture Guide here


Leave a comment

Creating VM Cluster on Azure #Cloud with Terraform #IaC #Azure #Terraform #Linux #Winserv

Type az and you should see this Azure CLI

Type Terraform and you should see the terraform commands

 

Install and configure Terraform to provision VMs and other infrastructure into Azure

Before you begin with Terraform and deploying your solution to Microsoft Azure you have to install Azure CLI and Terraform for your OS.

In the following step-by-step guide we will deploy a VM Cluster with Terraform into Microsoft Azure Cloud Services.

First we open Powershell in Administrator mode :

You should have your Terraform script ready.

It’s great to edit your Terraform script in Visual Studio Code

Create a Terraform configuration file
In this section, you create a file that contains resource definitions for your infrastructure.
Create a new file named main.tf.
Copy following sample resource definitions into the newly created main.tf file:


resource “azurerm_resource_group” “test” {
name = “acctestrg”
location = “West US 2”
}

resource “azurerm_virtual_network” “test” {
name = “acctvn”
address_space = [“10.0.0.0/16”]
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”
}

resource “azurerm_subnet” “test” {
name = “acctsub”
resource_group_name = “${azurerm_resource_group.test.name}”
virtual_network_name = “${azurerm_virtual_network.test.name}”
address_prefix = “10.0.2.0/24”
}

resource “azurerm_public_ip” “test” {
name = “publicIPForLB”
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”
public_ip_address_allocation = “static”
}

resource “azurerm_lb” “test” {
name = “loadBalancer”
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”

frontend_ip_configuration {
name = “publicIPAddress”
public_ip_address_id = “${azurerm_public_ip.test.id}”
}
}

resource “azurerm_lb_backend_address_pool” “test” {
resource_group_name = “${azurerm_resource_group.test.name}”
loadbalancer_id = “${azurerm_lb.test.id}”
name = “BackEndAddressPool”
}

resource “azurerm_network_interface” “test” {
count = 2
name = “acctni${count.index}”
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”

ip_configuration {
name = “testConfiguration”
subnet_id = “${azurerm_subnet.test.id}”
private_ip_address_allocation = “dynamic”
load_balancer_backend_address_pools_ids = [“${azurerm_lb_backend_address_pool.test.id}”]
}
}

resource “azurerm_managed_disk” “test” {
count = 2
name = “datadisk_existing_${count.index}”
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”
storage_account_type = “Standard_LRS”
create_option = “Empty”
disk_size_gb = “1023”
}

resource “azurerm_availability_set” “avset” {
name = “avset”
location = “${azurerm_resource_group.test.location}”
resource_group_name = “${azurerm_resource_group.test.name}”
platform_fault_domain_count = 2
platform_update_domain_count = 2
managed = true
}

resource “azurerm_virtual_machine” “test” {
count = 2
name = “acctvm${count.index}”
location = “${azurerm_resource_group.test.location}”
availability_set_id = “${azurerm_availability_set.avset.id}”
resource_group_name = “${azurerm_resource_group.test.name}”
network_interface_ids = [“${element(azurerm_network_interface.test.*.id, count.index)}”]
vm_size = “Standard_DS1_v2”

# Uncomment this line to delete the OS disk automatically when deleting the VM
# delete_os_disk_on_termination = true

# Uncomment this line to delete the data disks automatically when deleting the VM
# delete_data_disks_on_termination = true

storage_image_reference {
publisher = “Canonical”
offer = “UbuntuServer”
sku = “16.04-LTS”
version = “latest”
}

storage_os_disk {
name = “myosdisk${count.index}”
caching = “ReadWrite”
create_option = “FromImage”
managed_disk_type = “Standard_LRS”
}

# Optional data disks
storage_data_disk {
name = “datadisk_new_${count.index}”
managed_disk_type = “Standard_LRS”
create_option = “Empty”
lun = 0
disk_size_gb = “1023”
}

storage_data_disk {
name = “${element(azurerm_managed_disk.test.*.name, count.index)}”
managed_disk_id = “${element(azurerm_managed_disk.test.*.id, count.index)}”
create_option = “Attach”
lun = 1
disk_size_gb = “${element(azurerm_managed_disk.test.*.disk_size_gb, count.index)}”
}

os_profile {
computer_name = “hostname”
admin_username = “testadmin”
admin_password = “Password1234!”
}

os_profile_linux_config {
disable_password_authentication = false
}

tags {
environment = “staging”
}
}


Type : terraform init

You should see this screen.

Type : az login

We now logging into Microsoft Azure subscription.

https://microsoft.com/devicelogin

Insert the code from your Powershell screen.

Now we have the Terraform INIT running and we are connected to our Azure Subscription 😉

Type : terraform plan

It will refreshing the state and getting ready for deployment.

Type : terraform apply

and then type : yes <enter>

Terraform is now creating the azure resources

Azure resource group acctestrg is made

Terraform deployment VM Cluster on Azure is Ready 😉

Azure VM Cluster is running.

When you want to remove the complete Azure VM Cluster with terraform, it’s really easy :

Type : terraform destroy

and then type : yes <enter>

Azure resources are being deleted via terraform script

Terraform destroyed the Azure VM Cluster


All Azure Resources of the VM Cluster are removed.

Hope this step-by-step guide deploying infrastructure as Code with terraform will help you with your own Cloud solutions in Microsoft azure.

Ps. don’t forget to install Visual Studio Code Azure Terraform extension and play !

#MVPbuzz



Leave a comment

#Build your Own Azure DevOps Project Pipeline #Cloud #Azure #DevOps #Pipeline

Microsoft Azure DevOps Projects

The Azure DevOps Project automates the setup of an entire Continuous Integration (CI) and Continuous Delivery (CD) pipeline to Azure. You can start with your existing code or use one of the provided sample applications, and then quickly deploy that application to various Azure services such as Virtual Machines, App Service, Azure Container Service, Azure SQL Database, and Azure Service Fabric.
The Azure DevOps project does all the work for the initial configuration of a DevOps pipeline including everything from setting up the initial Git repository, configuring the CI/CD pipeline, creating an Application Insights resource for monitoring, and providing a single view of the entire solution with the creation of an Azure DevOps Project dashboard on the Azure portal.

Learn how to use the Azure DevOps Project to create VSTS Release pipelines :

  1. Bring your own code with GitHub
  2. Deploy your ASP.NET App to Azure Virtual Machines
  3. Deploy your ASP.NET App and Azure SQL Database
  4. Deploy your App to Azure Container Service and Kubernetes
  5. Deploy your App to Azure Service Fabric

Microsoft Azure CI/CD Pipeline integrated with VSTS


Get started today with your Own Azure DevOps Project here